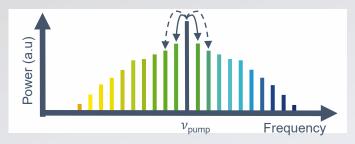
Frequency comb generation using silicon oxynitride optical resonators

Dongyu Chen¹, Andre Kovach¹, Sumiko Poust², Vincent Gambin², Andrea M. Armani¹
¹ University of Southern California, Los Angeles, California, United States
² NG Next, Northrop Grumman Corporation, Redondo Beach, California, United States

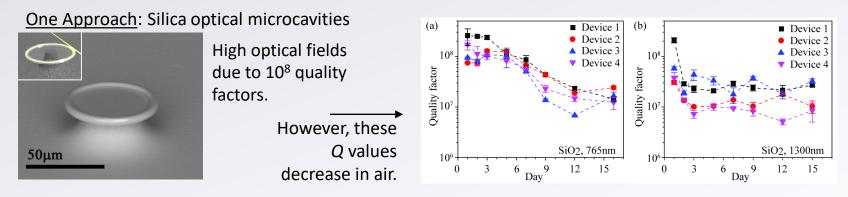
Abbreviated abstract: Ultra-high quality factor (UHQ) optical resonant cavities are able to store light for long periods of time, resulting in the build-up of large optical fields. Past work with silica cavities has leveraged these high powers to create frequency combs. Unfortunately, silica attracts water, degrading the cavity *Q*. An alternative, environmentally-stable material system is silicon oxynitride. In this work, UHQ toroidal cavities are fabricated from silicon oxynitride, and frequency comb generation is demonstrated.


Related publications:

- D. Chen *et al*, Applied Physics Letters 115 (5), 1105 (2019)
- D. Chen et al, ACS Photonics 4 (9), 2376-2381 (2017)

USCViterbi

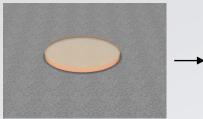
Previous work and challenge



USCViterbi

A comb converts a single laser source into symmetrically and equally spaced emission lines (f_r) at higher and lower wavelengths.

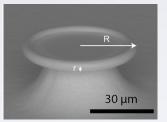
Requires:


- High nonlinearity (χ⁽³⁾)
- Large number of photons

POM Photonics Online Meetup

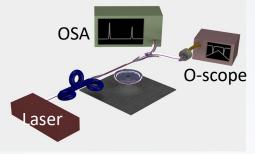
Solution: Replace Silica with Silicon Oxynitride D. Chen - 2

Technique <u>SiO_xN_y Device Fabrication</u>



Pattern SiO_xN_y film using Undercut using XeF₂

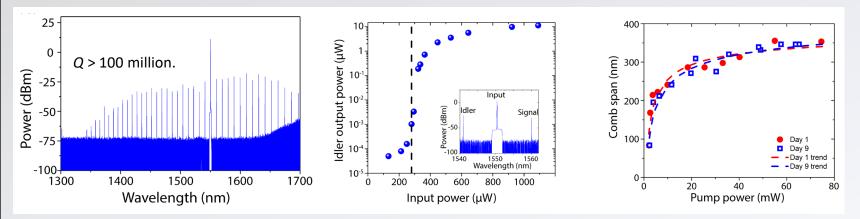
Reflow using CO₂ laser


SEM of SiO_xN_y device

Testing Methods

photolithography

USCViterbi


- 1550 nm laser is coupled into cavity using fiber waveguide.
- Frequency comb coupled out using waveguide and is detected on OSA.
- Transmission spectrum is monitored on o-scope (and *Q* is determined).

D. Chen - 3

Findings: Comb generation and Parametric threshold

Optical spectrum of a 350 nm wide frequency comb with a pump wavelength at 1551 nm and an input power of 60 mW.

USC Viterbi

Power of the idler signal recorded on OSA as a function of the input power coupled into the resonator. The threshold is estimated to be around 280 µW. The relationship between the comb span and the input power measured on Day 1 and Day 9 after the device fabrication.

